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Background 

 Machine learning shows increasing successful applications 

in power systems
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Brief of the presentation 
 1) Power Flow Calculation

 How to calculate power flow using a data-

driven model. 

 2) Topology Identification

 How to identify the topology and estimate line 

parameters of distribution network without the 

measurement of voltage phase angles. 

 3) Operation Mode Analysis 

 How to cluster the operation mode of power

system under high renewable energy

penetration.

Power System 

Analysis

Model-driven Data-driven

Machine 

learning 
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DATA-DRIVEN  POWER FLOW 
LINEARIZATION

-A REGRESSION APPROACH

9

Yuxiao Liu, Ning Zhang, Yi Wang, Jingwei Yang and Chongqing Kang. Data-driven power flow linearization: a regression 

approach, IEEE Transactions on Smart Grid, 2019, 10(3): 2569 - 2580. 
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Why power flow function linearization?

( cos sin ) 1,2,...,

( sin cos ) 1,2,...,
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



 Basis of optimization and control

 Unit commitment, voltage control, OPF, planning optimization… 

 Basis of analytical analysis

 Stability analysis, reliability analysis, contingency analysis, LMP prices

Purpose and background
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Purpose and background

Yang J, Zhang N, Kang C, et al. A state-independent linear power flow model with accurate estimation of

voltage magnitude[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3607-3617.

Yang Z, Zhong H, Xia Q, et al. A novel network model for optimal power flow with reactive power and network 

losses[J]. Electric Power Systems Research, 2017, 144:63-71.

Power Flow Linearization
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PF Linearization

Yang J, Zhang N, Kang C, et al. A state-independent linear power flow model with accurate estimation 

of voltage magnitude[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3607-3617.
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An illustrative two-bus system:

'      
      

     

P B G θ

Q G B V

( cos sin ) 

( sin cos ) 

i i j ij ij ij ij

j i

i i j ij ij ij ij

j i

P V V G B

Q V V G B

 

 





 

 





P Bθ

V PQ12 12r jx

1 2

1) The non-linear ACPF has a high degree of linearity

2) The two model-based linear approximations (DCPF and DLPF) still 

result in clear errors

Purpose and background
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Problem formulation
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Power 

injections

Voltage and 

power flow

ACPF

DCPF or DLPF

P Bθ

Data driven PF?
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Why data driven

 Do not require knowledge of the system topologies and parameters  

 The exact system topologies, element parameters, and the control logic of

active control devices are difficult to model accurately in some distribution

network.

 Improve the linearization accuracy of PF calculations

 The measurement data reflects the operation status more efficiently than

equivalent parameters. (e.g. parameters may change due to the atmospheric

condition and aging)

Power system 

analysis and 

control

Regression
Data-driven 

PF functions

Data driven 

model

Historical 

steady-state 

operation data

Purpose and background
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Forward regression ( , ) as a function of ( , )P Q V 

P

Q
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       

CP H N θ

CQ M L V

 Formulation:

 Potential application: Data Synchronization

 The “power flow analysis” is necessary to synchronize the

data stream of different types of measurements from

PMUs, PV inverters, and smart meters.

 Forward regression can be used to recover the power

injection from the voltage measurements.

J. Yu, Y. Weng and R. Rajagopal, "Mapping Rule Estimation for Power Flow Analysis in Distribution 

Grids," arXiv preprint arXiv:1702.07948, 2017.

Technology roadmap

16
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Inverse regression:

 Potential applications:
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 Formulation:

 Improvement: 

It can calculate PF when considering different bus types

Power flow calculations, probabilistic power flow, optimal

power flow, voltage control

Technology roadmap
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Challenges of regression:

 To address the collinearity of data: 
 Collinearity among the voltage angle and magnitude data

is inevitable because of the similar rise and fall patterns

among the different buses

 Result in ill-conditioned regression and larger errors of PF

calculation

 To avoid overfitting: 
 The number of variables in the regression parameter

matrices for large power systems may be far greater than

the amount of historical operation data that represents the

current system situation

 A PLS-based regression and a BLR-based regression is 

proposed

Technology roadmap
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Relationship with Physical Parameter Matrices:

ACPF function

Jacobian matrix

Constant Jacobian 

matrix

DCPF function

X matrix
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These relationships can 

serve as an indicator of 

overfitting

Technology roadmap
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Data generation

 Monte Carlo simulation: 
 Meshed transmission grids: IEEE 5, 30, 57, and 118-bus 

systems

 Radial distribution grids: IEEE 33-bus system, the modified 123-

bus system

 Public testing data: 
 The NREL-118 test system (data collinearity)

I. Pena, C. Brancucci and B. M. Hodge, "An Extended IEEE 118-bus Test System with High 

Renewable Penetration," IEEE Trans. Power Syst., vol. PP, p. 1-1, 2017

Numerical results

22



©  2010 NACPPA All Rights Reserved.

Basic results

Numerical results

23
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Calculation results under data collinearity

 the NREL-118 test system

To show the robustness of the algorithm, the error in the figure is the largest among all 

groups in the NREL-118 test system.

Numerical results

24
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Regression Parameters
 IEEE 57-bus systems

 

 

Constant Jacobian matrix 

 

Forward regression parameter matrix under the 

PLS-based algorithm 

 

Forward regression parameter matrix under the 

BLR-based algorithm 

 

The inverse matrix of B  in DCPF 

 

Inverse regression parameter matrix under the 

PLS-based algorithm 

 

Inverse regression parameter matrix under the 

BLR-based algorithm 

Fig. A2.  Comparisons between regression parameter matrices and several power system matrices of IEEE 57-bus system 

Overfitting

Well-fitted

BB

Numerical results
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TOPOLOGY IDENTIFICATION AND 
LINE PARAMETER ESTIMATION FOR 
NON-PMU DISTRIBUTION NETWORK

27

Jiawei Zhang, Yi Wang, Yang Weng, and Ning Zhang, “Topology Identification and Line Parameter Estimation for non-PMU

Distribution Network: A Numerical Method.” IEEE Transactions on Smart Grid, accepted, in press, doi: 10.1109/TSG.2020.2979368
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Background

 Background: The operation and analysis of distribution

network requires the information of system topology and

line parameter.

 However, the real-time information of topology and line

parameter, especially branch's conductance and

susceptance may not be available in distribution networks,

since there is fewer monitoring devices for distribution

network than those in transmission network.

 Aim: identify the topology, estimate line parameter and

recover missing voltage angle at the same time without

the measurement of voltage angle.

29
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Framework

 Estimation of 

the distribution 

network’s 

topology and line 

parameter is 

equivalent to 

estimate matrix 

𝐺𝑖𝑗 , 𝐵𝑖𝑗 .

 A two-step 

model

p, q, v 

Datasets

Regression for

and 𝐺𝑖𝑗 𝐵𝑖𝑗

Reduce Noise for

and𝐺𝑖𝑗 𝐵𝑖𝑗

Correct topology, 

g, b and ϴ

Basic topology and line 

parameter

Fine topology, line 

parameter and phasor

Step 1:

Basic 

Identification

Step 2:

Fine

Identification

𝐺𝑖𝑗 after different processes

(6-bus test case)

31
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 Basic identification aims to provide approximate topology and line 

parameter for fine identification. 

Step 1: Basic Identification

Symmetrization

𝐺𝑖𝑗 matrix after regression

Equation
𝑝𝑖 = σ𝑗=1

𝑛 𝑣𝑖 𝑣𝑗(𝐺𝑖𝑗cos𝜃𝑖𝑗 + 𝐵𝑖𝑗sin𝜃𝑖𝑗)

𝑞𝑖 = σ𝑗=1
𝑛 𝑣𝑖 𝑣𝑗(𝐺𝑖𝑗sin𝜃𝑖𝑗 − 𝐵𝑖𝑗cos𝜃𝑖𝑗)

Regression ൧Τ𝑃𝑖 𝑉𝑖 = 𝐺𝑖𝑗
# ⋅ [𝑉𝑗

൧Τ𝑄𝑖 𝑉𝑖 =− 𝐵𝑖𝑗
# ⋅ [𝑉𝑗

Approximation
𝐺𝑖𝑗
# = 𝐺𝑖𝑗 + 𝜃𝑖𝑗𝐵𝑖𝑗

𝐵𝑖𝑗
# = 𝐵𝑖𝑗 − 𝜃𝑖𝑗𝐺𝑖𝑗

[𝐺𝑖𝑗
#

𝑆
] = ([𝐺𝑖𝑗

#] + [𝐺𝑖𝑗
#𝑇] Τ) 2

[𝐵𝑖𝑗
#

𝑆
] = ([𝐵𝑖𝑗

#] + [𝐵𝑖𝑗
#𝑇] Τ) 2

𝐺𝑖𝑗 matrix after reducing noise

33
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 After the basic identification obtains the rough topology and 

parameters, the fine identification further calculates the more 

accurate topology and parameters.

 Using known 𝑝, 𝑞 to solve g, b, 𝜃, we can apply Newton-Raphson 

Method.

 The amount of variables (2m+n-1) is larger than constraints (2n). 

Multiple samples would reduce the error from wrong measurements. 

Also, the number of constraints will be larger than that of variables. 

Step 2: Fine Identification

𝛥𝒑
𝛥𝒒

1×2𝑛

=

𝜕𝒑

𝜕𝒈

𝜕𝒑

𝜕𝒃

𝜕𝒑

𝜕𝜽
𝜕𝒒

𝜕𝒈

𝜕𝒒

𝜕𝒃

𝜕𝒒

𝜕𝜽

⋅
𝛥𝒈
𝛥𝒃
𝛥𝜽 1×(2𝑚+𝑛−1)

Newton-

Raphson 

Method

𝛥𝐏
𝛥𝐐 1×2𝑀⋅𝑛

=

𝜕𝐏

𝜕𝒈

𝜕𝐏

𝜕𝒃

𝜕𝐏

𝜕𝜣
𝜕𝐐

𝜕𝒈

𝜕𝐐

𝜕𝒃

𝜕𝐐

𝜕𝜣

⋅
𝛥𝒈
𝛥𝒃
𝛥𝜣 1×(2𝑚+𝑀⋅(𝑛−1))

M-Sample Newton-Raphson Method

m: number of branches

n: number of buses

M: Number of samples

34
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 Yet, Jacobian matrix built from M samples would usually not 

square. To solve that problem, we can get the unique optimal 

approximation solution using Penrose-Moore generalized inverse.

 The line parameter and voltage angel are renewed in each 

iteration.

 Another problem: The selection of initial value for g,b,𝜽.

Step 2: Fine Identification

generalized inverse
𝛥𝒈
𝛥𝒃
𝛥𝜣

=

𝜕𝐏

𝜕𝒈

𝜕𝐏

𝜕𝒃

𝜕𝐏

𝜕𝜣
𝜕𝐐

𝜕𝒈

𝜕𝐐

𝜕𝒃

𝜕𝐐

𝜕𝜣

†

⋅
𝛥𝐏
𝛥𝐐

𝒈
𝒃
𝜣

𝑘+1

=
𝒈
𝒃
𝜣

𝑘

+
𝛥𝒈
𝛥𝒃
𝛥𝜣
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Test cases

 Organization of data

 IEEE 33-bus test case (High renewables penetration)

 IEEE 123-bus test case (Large distribution network)
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IEEE 33-bus test case (high renewables penetration)

 Renewables on bus 2、
5、7、11、15、16、22、
26、30. 

 35% renewable energy 

penetration.

 Sampling：24h 

12min/record

 0.5% additional error to 

active and reactive power

40
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Organization of data: Data Source

 Load:

 Smart Meter Electricity Trial data from The Research Perspective

Ltd. It includes power load curves from 1000 residents and small

companies.
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Nine Typical Load Curves
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Organization of data: Data Source

 Renewables

 51 PV stations and 34 wind farms in China
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 There are 14 wrong branches after basic identification；

 Topology is corrected in 3 iterations；

 Convergence after 7 iterations.
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 g, b estimation errors 

are 20.9% and 26.5% 

after basic 

identification.

 While 0.03%,0.04% 

after fine identification.

IEEE 33-bus test case (high renewables penetration)
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IEEE 33-bus test case (high renewables penetration)

 With the increasing of additional error, the estimation error of 

g and b line parameters also increases. The method proposed 

in this paper has a high degree of redundancy when the 

measurement error is significant.
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IEEE 123-bus Test Case
(Large Distribution Network)

 In this test case, we 

investigate the impact of the 

size of measurement samples 

in basic identification on the 

whole algorithm.

 i.e. 24-hour dataset with 10, 

15, 20 and 25 samples per 

hour

 In fine identification, we only 

select the last 20 samples in 

basic identification’s dataset . 

48



©  2010 NACPPA All Rights Reserved.

IEEE 123-bus Test Case
(Large Distribution Network)

Basic identification Data 

Size

MAPE of 

g

MAPE of 

b

Number of

Iterations

Unidentified 

Branches

after Basic 

Identification

Time 

Consumption/s

10×24 0.158% 0.057% 6 32 141.3

15×24 0.133% 0.055% 9 24 150.4

20×24 0.133% 0.051% 7 5 108.6

25×24 0.144% 0.047% 6 1 107.3

 Though larger data size would increase time consumed in basic identification, 

with larger data size, the wrong branches after basic identification reduce, 

and it may save time for the proposed method in fine identification. 
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IMPACT OF HIGH RENEWABLE 
PENETRATION ON THE POWER SYSTEM 
OPERATION MODE: 
A DATA-DRIVEN APPROACH

51

Qingchun Hou, Ershun Du, Ning Zhang, Chongqing Kang, Impact of High Renewable Penetration on the Power

System Operation Mode: A Data-Driven Approach. IEEE Transactions on Power Systems, 2020, 35(1): 731-741.
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Motivations

 The introduction of highly

penetrated renewable energy

make the power system

operation mode highly

diversified and variable.

Over-generation and its 
uncertainty at noon

Probabilistic Duck Curve in Qinghai in 2020

Hou, Q., Zhang, N., Du, E., Miao, M., Peng, F., & Kang, C. (2019). Probabilistic duck curve in high PV penetration power system:

Concept, modeling, and empirical analysis in China. Applied Energy, 242, 205-215.
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Challenges 

 How to pick typical/representative days in power system

planning/operation analysis?

 How many should be picked?

 How to pick?
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Power system operation mode from a data-
driven prospective

 The power system operation mode definition

 The status of power system operation, which is determined by the generator

outputs, load demand, transmission topology, and accordant power flow in a

certain period, such as a day, an hour or a snapshot.

 Identifying the power system operation mode pattern is a typical big-data

analytic problem.

 These data are inherently high-dimensional and complexly coupled to one

another

 Those operation data will have a significant variation with time, which makes

it very hard to find the patterns in large amounts of data.
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Challenge of analyzing the operation data 

 The operation mode data for real power system is high-

dimensional, correlated, and hard to obtain intuitive

understanding.

 The selected preprocessing algorithm must be efficient with large

amount of data;

 The clustering algorithm must be able to capture complicate power

system patterns under high renewable energy penetration;

 The dimension reduction and visualization algorithm should be able to

decouple the correlation among high-dimensional features and map

them into 2D/3D space for visualization and intuitive understanding.
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Data-driven Framework

Three issues:

 Power system operation data

acquisition: Sufficient operation data

including power flow, load, and unit output are

needed to form a complete year-round

operation modes data set.

 Pattern identification: How to

recognize the key characteristics of massive

operation modes and identify the typical

patterns and the number of patterns.

 Visualization and evaluation: How

to visualize the high-dimensional operation

mode data to provide intuitive understanding

and quantify their characteristics.
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Operation data acquisition

 Power system chronological operation simulation

An operation mode should include three 

aspects: energy source side, grid side, and 

load demand side.

1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( )
( , , , , )
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energy
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flow

load 

demand

load 

shedding

 Operation data can also be obtained 

through SCADA system 
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Case Study

Year 2017 2020 2025

Hydro-power (MW) 1169 1637 1900

Thermal Power(MW) 360 510 850

Wind Power (MW) 162 700 1081

PV (MW) 790 2000 3800

PV and Wind Power 
Capacity/ Total Capacity 

(%)
38 56 64

Total Load (GWh) 88000 141300 161300

Maximal Load (MW) 10000 22000 25000

PV and Wind Power 
Generation/Total Load (%)

20 33 40

 Three renewable energy penetration scenarios are compared: 
 low penetration (20%) scenarios in 2017, medium penetration (33%) 

scenarios in 2020, high penetration (40%) scenarios in 2025.
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Power system simulation results

20%

Hydro-dominated

33%

PV and wind play 

an important role

40%

Intermittent renewable 

energy-dominated
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Visualization of data-driven results
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Adding more wind power Adding more PV power
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More Results for different PV penetration
Adding more wind power Adding more PV power
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Finding

 Data-driven approach provides more intuitive insight on the diversity of

power system operation mode.

 Under low renewable energy penetration, the power system operation

mode is dominated by load/hydropower and basically consistent with the

season.

 With the growing renewable energy penetration, the power system

mode is gradually dominated by intermittent PV and wind power,

indicating more representative modes are necessary for power system

planning.

 The break point is system-dependent, normally when the VRE

penetration is higher than 20%~30%.

 The impact of wind power and PV is distinct. Less daily difference are

observed when PV penetration is higher than 30%.
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Takeaways: Data-driven or model-driven?

Data

Model Decision
Model-driven optimization 

Data-driven approach 
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Takeaways: Data-driven or model-driven?
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Model-driven model

Data-driven model
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